Vol. 1 No. 25 (2024): International journal of science and technology
Articles

TASVIRLARNI SIQISHDA CHEGARAVIY QIYMAT ORQALI HAAR VEYVLET KOEFFITSENTLARINI SARALASH ALGORITMINI ISHLAB CHIQISH

Published 01-02-2025

Keywords

  • Haar toʻlqin, thresholding, adaptiv thresholding, tasvir siqish, signal ishlov berish, global chegara qiymat tanlash, Gaussian filtr, shovqin kamaytirish.

How to Cite

TASVIRLARNI SIQISHDA CHEGARAVIY QIYMAT ORQALI HAAR VEYVLET KOEFFITSENTLARINI SARALASH ALGORITMINI ISHLAB CHIQISH. (2025). INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 1(25), 157-162. https://doi.org/10.70728/nmpyw585

Abstract

Ushbu maqolada Haar toʻlqin usulidan foydalangan holda tasvir va signal siqish uchun chegaraviy qiymatlarni tanlash metodlari tadqiq qilinadi. Thresholding (chegaraviy qiymat tanlash) usuli siqish jarayonining samaradorligi va sifatini oshirishda muhim ahamiyatga ega. Maqolada adaptiv thresholding va global thresholding metodlari keltirilgan. Adaptiv thresholding usuli signal yoki tasvirning turli qismlariga mos chegara qiymatini tanlab, shovqinni kamaytirishga va tasvir sifatini saqlashga imkon beradi. Global thresholding esa umumiy chegara qiymatidan foydalangan holda koeffitsientlarni saralash usulini o'z ichiga oladi. Maqolada keltirilgan usullarning afzalliklari va kamchiliklari tahlil qilinib, Haar toʻlqin koeffitsientlari uchun eng samarali chegara tanlash algoritmi ishlab chiqiladi.

References

  1. 1. Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3), 425–455.
  2. 2. Mallat, S. (2009). A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press.
  3. 3. Strang, G., & Nguyen, T. (1997). Wavelets and Filter Banks. Wellesley-Cambridge Press.
  4. 4. Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM.
  5. 5. Zhang, B., & Stanley, H. (2004). Wavelet Transform Thresholding for Image Compression. IEEE Transactions on Image Processing, 13(6), 863–872.
  6. 6. González, R. C., & Woods, R. E. (2017). Digital Image Processing. Pearson.
  7. 7. Chang, S. G., Yu, B., & Vetterli, M. (2000). Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing, 9(9), 1532–1546.
  8. 8. Pesquet, J. C., Krim, H., & Carfantan, H. (1996). Time-invariant orthonormal wavelet representations. IEEE Transactions on Signal Processing, 44(8), 1964–1970.
  9. 9. Coifman, R. R., & Wickerhauser, M. V. (1992). Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory, 38(2), 713–718.
  10. 10. Figueiredo, M. A. T., & Nowak, R. D. (2001). Wavelet-based image estimation: An empirical Bayes approach using Jeffrey's noninformative prior. IEEE Transactions on Image Processing, 10(9), 1322–1331.