Articles
Published 04-11-2025
Keywords
- real space, complex space, real plane, complex hyperplane

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
ON COMPLEX HYPERPLANES IN Cn SPACE AND THEIR PROJECTIONS IN REAL SPACE. (2025). INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2(14), 31-34. https://doi.org/10.70728/tech.v02.i14.007
Abstract
This article studies the projections of complex hyperplanes in the real space of Cn. In particular, it proves
a theorem stating that for any m ≤ n dimensional real plane taken from the space Rn ⊂ Cn, there exists a
unique m-dimensional complex plane that contains it.
References
- 1. B.V. Shabat. Introduction to complex Analysis
- Part II Functions of Several variables. American
- Mathematical Society, (1992) 1-12.
- 2. Rudin W., Principles of Mathematical Analysis,
- R.R. Donnelley & Sons, 1976, pp. 16–19.
- 3. Drnovsek, B.D., Forstnerich F.: Minimal hulls of
- compact sets in .. Trans. Am. Math. Soc. 368(10),
- 7477–7506, October 2016.
- 4. Harvey F. R. and Lawson H. B. Jr., An
- introduction to potential theory in calibrated
- geometry. Amer. J. Math., V. 131, no. 4, (2009),
- 893-944.
- 5. Harvey F. R. and Lawson H. B. Jr., Duality
- of positive currents and plurisubharmonic
- functions in calibrated geometry. Amer. J.
- Math.,V. 131, no. 5, (2009), 1211-1240.
- 6. Harvey F. R. and Lawson H. B. Jr., Geometric
- plurisubharmonicity and convexity – an
- introduction. Advances in Mathematics, V. 230,
- (2012), 2428-2456.
- 7. Harvey F. R. and Lawson H. B. Jr.,
- Plurisubharmonicity in a general geometric
- context. Geometry and Analysis I, (2010),
- 363-401.
- 8. Harvey F.R. and Lawson H. B. Jr., Calibrated
- geometries // Acta Mathematica 148, 1982, pp.
- 47-157.
- 9. Harvey F.R. and Lawson H.B.Jr., convexity,
- plurisubharmonicity and the Levi problem//
- Indiana Univ. Math. J. 62 no. 1 (2013), 149-169.
- 10. Joyce D., Riemannian holonomy groups and
- calibrated geometry. Oxford University Press, –
- U.S.A. 2007. – 318 p.