Vol. 2 No. 11 (2025): International journal Science and Technology
Articles

Preparation of TiO₂-Based Dye-Sensitized Solar Cell Photoanodes under Ultrasonic Treatment

Published 17-09-2025

Keywords

  • TiO₂ (titanium dioxide), SBQE (sensitive dye solar cell), liquid crystals, polymerized ionic liquid, ITO (indium tin oxide), FTO (fluorine-doped tin oxide).

How to Cite

Preparation of TiO₂-Based Dye-Sensitized Solar Cell Photoanodes under Ultrasonic Treatment. (2025). INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2(11), 25-29. https://doi.org/10.70728/tech.v2.i11.009

Abstract

Although this type of solar cell is still in the developmental stage, it has already garnered significant attention from the scientific community. This interest stems from the potential to produce energy devices in the future using cost-effective and environmentally friendly materials. A comprehensive set of materials required for conducting experimental observations was prepared. The study also examined the effect of ultrasonic treatment on the sample's photoanode and its influence on the performance of the fabricated photoelectric device.

References

  1. [1] S. Shalini, R. Balasundaraprabhu, T. Satish Kumar, N. Prabavathy, S. Senthilarasu, and S. Prasanna, “Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review,” 2016. doi: 10.1002/er.3538.
  2. [2] UU Republik Indonesia et al., “PENENTUAN ALTERNATIF LOKASI TEMPAT PEMBUANGAN AKHIR (TPA) SAMPAH DI KABUPATEN SIDOARJO,” Energies, vol. 15, no. 1, 2022.
  3. [3] S. Shalini, R. Balasundara Prabhu, S. Prasanna, T. K. Mallick, and S. Senthilarasu, “Review on natural dye sensitized solar cells: Operation, materials and methods,” 2015. doi: 10.1016/j.rser.2015.07.052.
  4. [4] M. Bonomo et al., “Unreported resistance in charge transport limits the photoconversion efficiency of aqueous dye-sensitised solar cells: an electrochemical impedance spectroscopy study,” Mater. Today Sustain., vol. 21, 2023, doi: 10.1016/j.mtsust.2022.100271.
  5. [5] C. C. P. Chiang et al., “PtCoFe Nanowire Cathodes Boost Short-Circuit Currents of Ru(II)-Based Dye-Sensitized Solar Cells to a Power Conversion Efficiency of 12.29%,” Adv. Funct. Mater., vol. 28, no. 3, 2018, doi: 10.1002/adfm.201703282.
  6. [6] A. Åkesson, R. Hesselstrand, A. Scheja, and M. Wildt, “Longitudinal development of skin involvement and reliability of high frequency ultrasound in systemic sclerosis,” Ann. Rheum. Dis., vol. 63, no. 7, 2004, doi: 10.1136/ard.2003.012146.
  7. [7] H. S. Kang, W. S. Kim, Y. K. Kshetri, H. S. Kim, and H. H. Kim, “Enhancement of Efficiency of a TiO2-BiFeO3 Dye-Synthesized Solar Cell through Magnetization,” Materials (Basel)., vol. 15, no. 18, 2022, doi: 10.3390/ma15186367.
  8. [8] V. Verma, M. Al-Dossari, J. Singh, M. Rawat, M. G. M. Kordy, and M. Shaban, “A Review on Green Synthesis of TiO2 NPs: Synthesis and Applications in Photocatalysis and Antimicrobial,” Polymers (Basel)., vol. 14, no. 7, 2022, doi: 10.3390/polym14071444.
  9. [9] А. А. Abdukarimov, R. G. Ikramov, O. O. Mamatkarimov, and A. K. Arof, “Dependence of the characteristics of dye-sensitized solar cells on amount tetrapropylammonium iodide,” «Узбекский физический журнал», vol. 22, no. 4, 2019, doi: 10.52304/.v22i4.166.
  10. [10] Q. A. Yousif and N. H. Haran, “Fabrication of TiO2 nanotubes via three-electrodes anodization technique under sound waves impact and use in dye-sensitized solar cell,” Egypt. J. Chem., vol. 64, no. 1, 2021, doi: 10.21608/EJCHEM.2020.28233.2596.
  11. [11] A. M. Zulkifli et al., “Characteristics of Dye-Sensitized Solar Cell Assembled from Modified Chitosan-Based Gel Polymer Electrolytes Incorporated with Potassium Iodide,” Molecules, vol. 25, no. 18, 2020, doi: 10.3390/molecules25184115.
  12. [12] R. Ahmad et al., “Contributors,” in Advances in Electronic Materials for Clean Energy Conversion and Storage Applications, 2023. doi: 10.1016/b978-0-323-91206-8.00065-0.
  13. [13] J. H. Kim, D. H. Kim, J. H. So, and H. J. Koo, “Toward eco-friendly dye-sensitized solar cells (DSSCs): Natural dyes and aqueous electrolytes,” 2022. doi: 10.3390/en15010219.
  14. [14] H. Esgin, Y. Caglar, and M. Caglar, “Photovoltaic performance and physical characterization of Cu doped ZnO nanopowders as photoanode for DSSC,” J. Alloys Compd., vol. 890, 2022, doi: 10.1016/j.jallcom.2021.161848.
  15. [15] A. M. El-naggar, Z. K. Heiba, A. M. Kamal, and M. B. Mohamed, “Modification and development of the structural, linear/nonlinear optical and electrical characterization of PVC incorporated with iron chromium oxide and TPAI,” Opt. Quantum Electron., vol. 55, no. 11, 2023, doi: 10.1007/s11082-023-05230-9.
  16. [16] А. С. Рудый, С. В. Курбатов, А. А. Мироненко, В. В. Наумов, Ю. С. Егорова, and Е. А. Козлов, “Удельное сопротивление тонкопленочных электродов Si@O@Al и LiCoO-=SUB=-2-=/SUB=-,” Письма в журнал технической физики, vol. 49, no. 14, 2023, doi: 10.21883/pjtf.2023.14.55817.19543.
  17. [17] R. Katoh et al., “Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O 5, SnO2, In2O3) Films,” J. Phys. Chem. B, vol. 108, no. 15, 2004, doi: 10.1021/jp031260g.
  18. [18] A. Dolgonos, T. O. Mason, and K. R. Poeppelmeier, “Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method,” J. Solid State Chem., vol. 240, 2016, doi: 10.1016/j.jssc.2016.05.010.
  19. [19] Ł. Haryński, A. Olejnik, K. Grochowska, and K. Siuzdak, “A facile method for Tauc exponent and corresponding electronic transitions determination in semiconductors directly from UV–Vis spectroscopy data,” Opt. Mater. (Amst)., vol. 127, 2022, doi: 10.1016/j.optmat.2022.112205.
  20. [20] А. Н. Резник and Н. В. Востоков, “Резонансная микроволновая спектроскопия полупроводников с микронным разрешением,” Журнал технической физики, vol. 92, no. 3, 2022, doi: 10.21883/jtf.2022.03.52145.262-21.
  21. [21] J. Klein, L. Kampermann, B. Mockenhaupt, M. Behrens, J. Strunk, and G. Bacher, “Limitations of the Tauc Plot Method,” Adv. Funct. Mater., vol. 33, no. 47, 2023, doi: 10.1002/adfm.202304523.
  22. [22] H. H. Nguyen, G. Gyawali, T. H. Kim, S. Bin Humam, and S. W. Lee, “Blue TiO2 polymorph: An efficient material for dye-sensitized solar cells fabricated using a low-temperature sintering process,” Prog. Nat. Sci. Mater. Int., vol. 28, no. 5, 2018, doi: 10.1016/j.pnsc.2018.08.003.
  23. [23] Q. Guo, C. Zhou, Z. Ma, and X. Yang, “Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges,” 2019. doi: 10.1002/adma.201901997.