Vol. 2 No. 14 (2025): International Journal of Science and Technology
Articles

5G VA IOT TARMOQLARIDA MA’LUMOT UZATISH SAMARADORLIGINI OSHIRISH UCHUN SUN’IY INTELLEKT ASOSIDAGI TAHLIL USULLARI

Published 04-11-2025

Keywords

  • 5G, IoT, sun’iy intellekt, mashinaviy o‘rganish, kechikish, tarmoqli kenglik, Edge AI, Federated Learning, optimallashtirish, tarmoq boshqaruvi

How to Cite

5G VA IOT TARMOQLARIDA MA’LUMOT UZATISH SAMARADORLIGINI OSHIRISH UCHUN SUN’IY INTELLEKT ASOSIDAGI TAHLIL USULLARI. (2025). INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2(14), 8-10. https://doi.org/10.70728/tech.v02.i14.002

Abstract

Ushbu maqolada 5G va Internet of Things (IoT) tarmoqlarida ma’lumot uzatish samaradorligini oshirishda
sun’iy intellekt (AI) va mashinaviy o‘rganish (ML) texnologiyalarining o‘rni yoritilgan. Tarmoq kechikishini
kamaytirish, tarmoqli kengligini optimal taqsimlash hamda real vaqtli uzatish sifatini oshirish uchun
ilg‘or algoritmik yechimlar tahlil qilinadi. Shuningdek, 5G-IoT integratsiyasida Edge AI va Federated Learning
texnologiyalarining afzalliklari ko‘rsatilib, yangi adaptiv boshqaruv modeli taklif etiladi. Natijalar sun’iy
intellekt yondashuvlari yordamida tarmoq samaradorligini sezilarli darajada yaxshilash mumkinligini tasdiqlaydi.

References

  1. 1. Zhang, H., et al. AI-Driven Optimization in
  2. 5G and IoT Networks. IEEE Communications
  3. Surveys & Tutorials, 2023.
  4. 2. Chen, M., et al. Deep Learning for Wireless
  5. Communications in 5G Networks. IEEE
  6. Network, 2021.
  7. 3. Li, X., & Sun, Y. Edge Intelligence for IoT
  8. Systems. Springer, 2020.
  9. 4. Al-Fuqaha, A., et al. Internet of Things:
  10. Enabling Technologies and Applications. IEEE
  11. Communications Surveys, 2022.
  12. 5. O‘zbekiston Respublikasi Raqamli
  13. texnologiyalar vazirligi. 5G tarmoqlarini
  14. rivojlantirish strategiyasi 2025. Toshkent,
  15. 2024.
  16. 6. Kato, N., et al. Edge AI: A New Paradigm
  17. for Intelligent IoT Systems. IEEE Wireless
  18. Communications, 2022