5G VA IOT TARMOQLARIDA MA’LUMOT UZATISH SAMARADORLIGINI OSHIRISH UCHUN SUN’IY INTELLEKT ASOSIDAGI TAHLIL USULLARI
Published 04-11-2025
Keywords
- 5G, IoT, sun’iy intellekt, mashinaviy o‘rganish, kechikish, tarmoqli kenglik, Edge AI, Federated Learning, optimallashtirish, tarmoq boshqaruvi

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
Ushbu maqolada 5G va Internet of Things (IoT) tarmoqlarida ma’lumot uzatish samaradorligini oshirishda
sun’iy intellekt (AI) va mashinaviy o‘rganish (ML) texnologiyalarining o‘rni yoritilgan. Tarmoq kechikishini
kamaytirish, tarmoqli kengligini optimal taqsimlash hamda real vaqtli uzatish sifatini oshirish uchun
ilg‘or algoritmik yechimlar tahlil qilinadi. Shuningdek, 5G-IoT integratsiyasida Edge AI va Federated Learning
texnologiyalarining afzalliklari ko‘rsatilib, yangi adaptiv boshqaruv modeli taklif etiladi. Natijalar sun’iy
intellekt yondashuvlari yordamida tarmoq samaradorligini sezilarli darajada yaxshilash mumkinligini tasdiqlaydi.
References
- 1. Zhang, H., et al. AI-Driven Optimization in
- 5G and IoT Networks. IEEE Communications
- Surveys & Tutorials, 2023.
- 2. Chen, M., et al. Deep Learning for Wireless
- Communications in 5G Networks. IEEE
- Network, 2021.
- 3. Li, X., & Sun, Y. Edge Intelligence for IoT
- Systems. Springer, 2020.
- 4. Al-Fuqaha, A., et al. Internet of Things:
- Enabling Technologies and Applications. IEEE
- Communications Surveys, 2022.
- 5. O‘zbekiston Respublikasi Raqamli
- texnologiyalar vazirligi. 5G tarmoqlarini
- rivojlantirish strategiyasi 2025. Toshkent,
- 2024.
- 6. Kato, N., et al. Edge AI: A New Paradigm
- for Intelligent IoT Systems. IEEE Wireless
- Communications, 2022